Cue utilization differentiates resource allocation during sustained attention simulated rail control tasks.

This study was designed to examine whether cue utilization differentiates performance and resource allocation during simulated rail control tasks that contain implicit patterns of train movement. Two experiments were conducted, the first of which involved the completion of a 30-min rail control simulation that required participants to reroute trains either infrequently (monitoring task) or periodically (process control task). In the monitoring condition, participants with lower cue utilization recorded a greater increase in response latency over time. However, in the process control condition, cue utilization failed to differentiate performance. In the second experiment, the duration of the rail control task was increased, and measures of participant fixation rates and cerebral blood flow were taken. Participants with higher cue utilization demonstrated greater decreases in fixation rates, smaller changes in cerebral oxygenation in the prefrontal cortex, and smaller increases in response latencies, compared with participants with lower cue utilization. The results of the study provide support for the assertion that a relatively greater capacity for cue utilization is associated with the allocation of fewer cognitive resources during sustained attention tasks that embody an implicit pattern of activity. (PsycINFO Database Record (c) 2019 APA, all rights reserved)